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ABSTRACT

We present a construction of an Orlicz space admitting a C°°-smooth
bump which depends locally on finitely many coordinates, and which is
not isomorphic to a subspace of any C(K), K scattered. In view of the
related results this space is possibly not isomorphic to a polyhedral space.

1. Introduction

In the present paper we investigate the properties of Orlicz sequence spaces
admitting bump functions that depend locally on finitely many coordinates
(LFC).

The first use of the LFC notion for a function was the construction of C'>°-
smooth and LFC renorming of ¢y, due to Kuiper, which appeared in [BF]. The
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LFC notion was explicitly introduced and investigated in the paper [PWZ] of
Pechanec, Whitfield and Zizler. In their work the authors have proved that every
Banach space admitting a LFC bump is saturated with copies of ¢y, providing
in some sense a converse to Kuiper’s result. Not surprisingly, it turns out that
the LFC notion is closely related to the class of polyhedral spaces, introduced
by Klee [K] and thoroughly investigated by many authors (see [JL, Chapter 15]
for results and references). (We note that polyhedrality is understood in the
isomorphic sense in this paper.) Indeed, prior to [PWZ], Fonf [F1] has proved
that every polyhedral Banach space is saturated with copies of ¢y. Later, it was
independently proved in [F2] and [Hajl] that every separable polyhedral Banach
space admits an equivalent LFC norm. Using the last result Fonf’s result is a
corollary of [PWZ]. The notion of LFC has been exploited (at least implicitly) in
a number of papers, in order to obtain very smooth bump functions, norms and
partitions of unity on nonseparable Banach spaces, see e.g. [Tol, [Ta], [DGZ1],
[GPWZ], [GTWZ], [FZ], [Hayl], [Hay2], [Hay3], [S1], [S2], [Haj1], [Haj2], [Haj3]
and the book [DGZ]. In fact, it seems to be the only general approach to
these problems. The reason is simple; it is relatively easy to check the (higher)
differentiability properties of functions of several variables, while for functions
defined on a Banach space it is very hard.

For separable spaces, one of the main known results is that a separable Banach
space is polyhedral if and only if it admits a LFC renorming (resp., C*°-smooth
and LFC renorming), [Hajl]. However, this smoothing up result is obtained
by using the boundary of a Banach space, rather than through some direct
smoothing procedure. Another recent result ([HJ1]) is that a separable Banach
space with a (shrinking) Schauder basis has a C*°-smooth and LFC bump
function whenever it has a continuous LFC bump. This seems to be the first
relatively general result in this direction.

The main result of the paper, contained in Section 4, is a certain rather subtle
construction of an Orlicz sequence space having a C*°-smooth and LFC bump
function, which we suspect to be non-polyhedral. Such an example is of course
needed to justify the whole theory, since in the polyhedral case the smoothing
up (and structural) results are well-known and easier. In fact, our paper, and in
particular the example was motivated by the beautiful theory of polyhedrality
for separable Banach spaces with Schauder basis, and especially Orlicz sequence
spaces, developed by Leung in [L1] and [L2]. The key result of these works is
the following theorem.
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THEOREM ([L2]): The following statements are equivalent for every non-dege-
nerate Orlicz function M :

(i) There exists a constant K > 0 such that lim;_,o4 M (Kt)/M(t) = cc.
(ii) The Orlicz sequence space hy is isomorphic to a subspace of C(w®).
(iii) The Orlicz sequence space hpy Is isomorphic to a subspace of C(K) for

some scattered compact K.

All spaces satisfying (ii) are polyhedral, and Leung conjectured that con-
versely all polyhedral Orlicz sequence spaces fall under this description. There
is a strong evidence supporting this idea. First, Theorem 8, part of which is
also in Leung’s paper, shows that the naturally defined LFC renormings exist
precisely for those spaces. Second, negating the condition in (i) we obtain the
following formula

(VK > 0)(3{tn 1ot N, 0) i L)
n—oo  M(t,)
Reversing the order of the quantifiers we obtain the following stronger (less
general) condition

(L1, b N, 0)(VE > 0) Tim L)
n—oo  M(t,)
Leung proved that Orlicz sequence spaces satisfying the last condition are not
polyhedral (although they may be ¢q saturated).

Thus Leung’s theorem above is a near characterisation of polyhedrality for
Orlicz sequence spaces, the gap lying in the exchange of quantifiers. Our exam-
ple of an Orlicz sequence space with C'°°-smooth and LFC bump lies strictly in
between the above conditions. Therefore, our space is either a non-polyhedral
space admitting a LFC bump (we are inclined to believe this alternative), or
Leung’s polyhedral conjecture is false.

We refer to [FHHMPZ], [LT] and [JL] for background material and results.

2. Preliminaries

We use a standard Banach space notation. If {e;} is a Schauder basis of a Ba-
nach space, we denote by {e;} its biorthogonal functionals. P, are the canon-
ical projections associated with the basis {e;}, P} are the operators adjoint
to P,, i.e. the canonical projections associated with the basis {e}}. Given a
set A C N we denote by P4 the projection associated with the set A, i.e.
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Pax =3, 4 ¢;(x)e;. By R, we denote the projections R, = I — P,, where I
is the identity operator. For a finite set B, |B| denotes the number of elements
of B. U(xz,d) is an open ball centered at x with radius ¢.

The notion of a function, defined on a Banach space with a Schauder ba-
sis, which is locally dependent on finitely many coordinates was introduced in
[PWZ]. The following definition is a slight generalisation which was used by
many authors.

Definition 1: Let X be a topological vector space, 2 C X an open subset, F be
an arbitrary set, M C X* and g: 2 — E. We say that g depends only on M
on aset U C Qif g(x) = g(y) whenever x,y € U are such that f(z) = f(y) for
all f € M. We say that g depends locally on finitely many coordinates
from M (LFC-M for short) if for each x € 2 there are a neighbourhood U C Q
of x and a finite subset ' C M such that g depends only on F' on U. We
say that g depends locally on finitely many coordinates (LFC for short) if it is
LFC-X™*.

We may equivalently say that g depends only on {f1,..., fr} C X*onU C Q
if there exist a mapping G: R™ — F such that g(z) = G(f1(z),..., fu(z)) for
all x € U. Notice, that if g: @ — F is LFC and h: E — F' is any mapping,
then also h o g is LFC.

The canonical example of a non-trivial LFC function is the sup norm on ¢y,
which is LFC-{e}} away from the origin. Indeed, take any = = (z;) € co, x # 0.
Let n € N be such that |z;| < ||z]|, /2 for ¢ > n. Then ||-||,, depends only on
{ef,...,ep} on Uz, ||z| o, /4).

A norm on a normed space is said to be LFC, if it is LFC away from the
origin. Recall that a bump function (or bump) on a topological vector space X
is a function b: X — R with a bounded non-empty support.

Let X be a Banach lattice. We say that a function f: X — R is a lattice
function if it satisfies either f(x) < f(y) whenever |z| < |y|, or f(z) > f(y)
whenever |z] < |y|. Recall that a Banach space X with an unconditional basis
{e;} has a natural lattice structure defined by > a;e; > 0 if and only if a; > 0
for all ¢ € N.

The word “coordinate” in the term LFC originates of course from spaces with
bases, where LFC was first defined using the coordinate functionals. In order to
apply the LFC techniques to spaces without a Schauder basis, the notion had
to be obviously generalised using arbitrary functionals from the dual. However,
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as shown in [HJ1], the generalisation does not substantially increase the supply
of LFC functions on Banach spaces with a Schauder basis, and we can always in
addition assume that the given LFC function in fact depends on the coordinate
functionals. This fact is not only interesting in itself; it is the main tool for
smoothing up LFC bumps on separable spaces with basis.

The following results from [HJ1] will be needed in the sequel.

LEMMA 2: Let X be a Banach space with a Schauder basis {e;} and E be an
arbitrary set. Then f: X — E is LEC-{e}} if and only if for each x € X there
is & > 0 and ng € N such that f(y) = f(P,y) whenever ||z — y|| < é and n > ny.

THEOREM 3: Let E be a set, X be a Banach space with a shrinking Schauder
basis {e;}, g: X — FE be a LFC mapping and € > 0. Then there is a (shrinking)
Schauder basis {z;} of X, (1 + ¢)-equivalent to {e;}, such that g is LFC-{x}}.

THEOREM 4: Let X be a Banach space with an unconditional Schauder basis
{e;}, which admits a continuous LFC bump. Then X admits a C°°-smooth
LFC-{e}} lattice bump.

3. Spaces with symmetric Schauder bases

Let X be a Banach space with a symmetric Schauder basis. In such spaces it is
possible to define a notion of the non-increasing reordering, which will be
one of the main tools in the sequel. For any z € X, = (z;), let us denote by
T a vector in X with its coordinates formed by the non-increasing reordering
of the sequence (]z;|). Notice that we can view X as a linear subspace of ¢
through the natural “coordinate” embedding. In the following lemma we gather
some simple properties of this reordering which will be used later.

LEMMA 5: Let X be a Banach space with a symmetric Schauder basis, x,y € X
be arbitrary.

(a) Let ||-| be a symmetric lattice norm on X. Then ||| PZ| — || Peyll| <
|z —y|| for any k € N.

(b) En\f < @ in the lattice sense for any n € N.

© 17—l <l — .-

(d) Let ||-|| be a lattice norm on X such that the basis is normalised. Then
the mapping x — P, 7 is n-Lipschitz for any n € N.
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Proof. (a) Consider a set A C N, |A| = k, such that Paz = Py, Since [I]l is
symmetric and lattice, | PyZ| = ||Paz|| and || Pey]| > || Pay||- This implies that
1Pl — 1Pl < I1Paz] - 1Payll < [Pate — p)ll < [l — .

(b) Let A C N, |A| < n be such that R,z = @, where w = & — P4Z. We put
z = R,%. Then Zz; = X4, for i € N. Let 7: N — N be a one to one mapping
such that @W; = wy ;). Then W; = ;) for i € N. As i < 7(i) <i+mn, it follows
that z; = Tiyn < /x\ﬂ(i) = W;.

(c) Let m: N — Nand 0: N — N be one to one mappings such that z; = |z, ;|
and J; = |Yo(iy|. Pick any n € N. There is k < n such that [y, < |[Yo(m)l-
(Otherwise there would be at least n coordinates of y for which their absolute
value is greater than |y,(,)| which is impossible.) Consequently, ¥, — ¥, =
1Zx ()| = Yo )| < 1Ty = 1Y) | < 2ry = Yry| < Nz =yl oo

(d) Using the fact that the basis is normalised, then (c¢) and then the fact
that ||-|| is lattice we obtain ||P,Z — P.y|| = [|Po(Z =) < i |(@ —73)i] <
w7 -l <0l -yl <nllz—yl. W

This is the key lemma:

LEMMA 6: Let X be a Banach space with a symmetric Schauder basis {e;},
®: X — R be a continuous function such that ®(xz) > 0 if x # 0 and {v,} CR
be a sequence decreasing to 1. For any N € N, define

Upy(x) = max W ®(P,T).

Then each function ¥y is LEC-{e}} on X \ {0}.

Proof. Without loss of generality we may assume that ||| is symmetric and
lattice. Let N € N and =z € X \ {0} be given. We claim that there exist
a neighbourhood V of x and N; € N such that Ty, > Zn,+1 and Uy(y) =
Vinin{n,n, ) (y) for all y € U. If [suppx| > N, then there exists Ny > N such
that Zny, > Tn,+1 and the claim follows. Otherwise, find N1 < N such that
ZN, > Zn,+1 = 0. Then choose 0 < § < Ty, /2 such that

(=) - 2(3)| < TN a(3)

M

whenever ||z — Z|| < (N1 + 1)d. Denote B = supp z and notice that |B| = Nj.
If |z —y|| < 6,7 € Band j ¢ B, then
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and hence
IRN, 9l = ||Posyl| = [|[Posly — )| < lly—=z| <6
Thus, for any n > N,
1Py — 2| = 1Py — Pn, 2| < BN Yl + 1PNy — P, 2|
<O+ N |T—2|, <6+ N |7—2|| < (Ny +1)6.

(For the last but one inequality use Lemma 5(c).) It follows from the choice of
0 that for n > N; we have
W(Paf) < 7 (1+ T ) o(3)
2’)/1

Ny — 7N1+1)@ ~
——— )0z

29N1+1 ®)
_ YN, +27N1+1 q)(i'\)

S YN1+1 (1 +

On the other hand,

YN (PN, Y) > v, (1 - w)@@)

2m
>, (1= P o)
_ N N o (3)

2
This means that ¥y (y) = maxi<p<n, 1 P(Pny) for ||z — y|| < d, which proves
the claim.

Using N7 and V' from the claim, let € = (Zy, — Zn,+1)/2. Choose A C N,
|A| = Ny, such that Py, T = Pax. If lz —y|| < e, then |y;| > |y;| whenever
i€ Aand j ¢ A. Hence for 1 < n < Nj the mappings y — P,y depend only
on {e}}ica on U(x,e). By the choice of Ny, it follows that ¥ x depends only
on {ef}ica on VNU(x,¢). |

4. Orlicz Sequence Spaces

This section contains the main result of the paper, namely a construction of
an Orlicz sequence space hp; with a C°°-smooth and LFC bump, which does
not embed into any C'(K) space, K scattered compact. As explained in the
introduction, our space is possibly non-polyhedral. If so, it would be the first
separable example of a Banach space for which the best smoothness (in the wider
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sense) of its bumps exceeds the best smoothness of its renormings. Indeed, our
space has C°°-smooth renormings, but, if non-polyhedral, it would have no
LFC renormings. Up to now, the only examples (due to Haydon [Hay3], see
also [DGZ]) with a similar property are non-separable. Recall that Haydon’s
space has a C*°-smooth bump, but no equivalent Gateaux smooth norm (and
in fact using basically the same proof one can conclude that it neither has an
equivalent LFC renorming).

For the basic properties of Orlicz sequence spaces we refer e.g. to [LT].

Let M be a non-degenerate Orlicz function and hp; be the respective Orlicz
sequence space. We define a function v: har — [0,00) by v(z) = Y ooy M(|x;).
It is easily checked that this function is convex, symmetric and lattice, v(0) = 0,
v(z) > 0 for x # 0, and, by the definition of the norm in hys, ||z]| = 1 if and
only if v(x) = 1. Tt follows from the convexity that v(z) < ||z| for z € By,,,
while v(z) > ||z|| if ||z|| > 1.

LEMMA 7: The mapping p: hy — €1 defined by p(x) = (M(|z;|)) is continu-
ous. Thus the function v(x) = ||u(z)||,, is continuous.

Proof. Suppose x € hp; and 0 < € < 1 are given. Choose N € N such that

|Rnz| < €/2. Then, by the continuity of M, we can choose 0 < § < &/2
N .

such that || Py (u(x) — p()lly, = 2imy M (J2:]) — M(Jya])| < e if [lz —y[] < 0.

Further, if |lz —y|| < 4, then [[Ryyl| < [|[Ryz|| + Ry (z —y)ll < [[Byz| +

lz — y|| < e and hence

() = w@)lle, < 1P () = w@)lle, + 1Rvp(@),, + 1RNp@)ll,
<e+v(Ryz)+ v(RNY)
<e+||Ryz| + || Byl
< 3e. |

Let M be a non-degenerate Orlicz function such that there is a K > 1 for
which lim;_,o+ M(Kt)/M(t) = oco. Leung in [L1] constructs a sequence {7}
of real numbers decreasing to 1 such that the norm on hps defined by |||z]||; =
supy, N || PeZ|| has the property that for each « € hjs there is j € N such that
llzlll; = [IPjz]||; and the supremum is attained at some n € N. An immediate
consequence of this is that the norm ||z||| = supy, n} || PxZ| is LFC-{e}}. To see
this, fix € hpr\ {0} and let n € N be such that n, | P,Z|| = sup,, n || PxZ||. Let
& = 1 | PAZ] (1 — )/ (72 + 7241 and take y € hyy satisfying |z — ] < c.
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Then, by Lemma 5(a), |HP;€E|| - HPka < ¢ for any k € N. Thus, for k > n,
Mo 1Pl > 0 | PaZl| = e = Nanin | PaZl| + 1218 > mwiin | Pa| + e
> i | Pz + mie
> i 1Pyl
which implies that |[|y[|| = supg<, 7} [ Pxyll. Combining this with Lemma 6 we
obtain that |||-||| is LFC-{e}}.

THEOREM 8 (Leung): Let M be a non-degenerate Orlicz function. There is
a sequence {ny} of real numbers decreasing to 1 such that the norm on hys
defined by

Il = swp s |25zl
is LEFC-{e}} if and only if there is a K > 1 such that
M(Kt)

(1) tli%lJr M (t) -

Proof. For the “if” part see the remark preceding the theorem. To show the
“only if” part (which also appeared in [L1], but not precisely formulated and
without proof), suppose that (1) does not hold and let {n;} be any sequence
decreasing to 1. We will construct a vector = € S}, such that its coordinates
form a positive non-increasing sequence and 7y, || Prz|| < 1 for each k € N. Then
obviously [|z]]| = 1, but |||Ppz||| = maxk<s, Mk || Pex| < 1 for any n € N and so
Il-ll is not LFC-{e}} by Lemma 2.

Let {K,} be an increasing sequence of real numbers, K, > 1 and K,, — cc.
For each n € N let C,, > 2 and {t}}72, be such that lim,_.t} = 0 and
M(Knt7) < Co,M(t}) for all k € N. Let {€,} be a sequence of real numbers
such that 0 < e, <1/2and >~ &,C, < 0o. Put mp =1 and find A > 0 such
that M (1/A) =1 (which means ||e;|| = A for any ¢ € N).

We choose t1 € {ti} this way: Define

)

k
Ztlei

i=1

my = min{k: Nk

and choose t; € {t}} small enough such that

(2) M(t1) < es and
1S0) K1 -1

3 m 1 .
() 7’1< +1—5201—1
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By the convexity of M we have

Nm, — Nmy — 1
1-— M — M(K
Mty t) < (1= B0 M(er) + =L (k)
nml 77m1
(4) <(1 Kl_l)M(t1)+ Kl— Cl ( )
C’1 1
1
2 J—
<( _EQ)M(tl) = o M),

where the last inequality follows from the inequality (3). By the definition of
my we have miM(n,,t1) > 1. Consequently, using this inequality together
with (4), miM(t1) > m1(1 — e2) M (nm,t1) > 1 — e3. Hence, by (2),

(m1 — 1)M(t1) >1-— 252.
We put 1 = ;11171 ti1e;. Notice that by the definition of m; we have

1/ Mmy—1 > llza |l = 1/nm, — Aty
Let us continue by induction. Fix any j > 1. Suppose we have t; € {t%},
m; € N and z; € hys already defined for all ¢ < j such that
i

Z(mk — mk—l)M(tk) >1—2e441,
k=1

1/777717:—1 > ||$z|| 2 1/777717: — At; and

[ mlfl

= Z Z tiek.

=1 k=m;_

We choose t; € {t]} this way: Define

k
Tj—1 + Z tjei

-

mj = min {kz > M1 Nk

i:’m,;l
and choose t; € {t, '} small enough such that
(5) M(t]) < Ej+1 and
K;—1
6 oy <1 gy (KLY
(6) Nmy < +17€]+11121213] C.—1



Vol. 168, 2008 POLYHEDRALITY IN ORLICZ SPACES 177

Notice that this is possible since ||2;_1|| < 1/7m,_, 1. Using again the convexity
of M, the fact that ¢; € {t}} and (6), for any 1 <1i < j we obtain

77mv—1 nm_l
M, ti <(17 i )Mti i MKt
() < (1= G ) Mt + BE—p M (16it)

<(1- iy — I)M(ti) MY PR VITR

K —1 K —1
C;—1
= (1 + (77mj - 1)K 1 M(tz)
Ej4+1 1
< (14 S ) = ar
1—¢j41 (t:) I—¢jm (t:)

These estimates together with the definition of m; and z;_; give

> (mi —mi ) M(t;) + (m; —mj_1 + 1)M(t;)

=1
Jj—1
> (1- 5j+1)( > (mi = mi )M (g ti) + (mj —mj 1 + 1)M(777rbjtj))

i=1

>1—¢gj41,

so the use of (5) yields

(7) Z(ml — mz,l)M(tz) >1-— 2€j+1-

i=1

We put

m;—1

J
T = Z Z tier

1=1 k=m;_1

and notice that, by the definition of m;,
(8) 1/77mj—1 > H‘rJH > 1/77mj - Atj'

We have inductively constructed a sequence {x;} C has given by the formula
above, such that ||z;|]| < 1 and (7) holds for any j € N. Choose any j > 1.
Since ||z;| < 1, it follows that ZZ:1(mi —m;—1)M(t;) < 1 and comparing this
with (7) for j — 1 we obtain

(mj —mj 1) M(t;) < 2¢;.
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This implies that ; — x € hy/. Indeed, suppose K > 0. Let n € N be such
that K,, > K. Then

[e.°]

3 (mi = mi_) M(Kt) <

i=n

(mi — mi_l)M(Kiti)

M8

<.
I

n

(mi — mz,l)C’ZM(tz) < 225101 < 00

n 1=n

M

.
Il

and so by the basic properties of hys the vector z = Y 2| ZZL:‘;}?I t;er belongs
to has. This means also that ¢; — 0 and thus from (8) we can conclude that
|lz|| = lim ||z;|| = 1. Moreover, the construction of x; (namely, the choice of

m;) guarantees that 7y, || Prx| < 1 for each k € N. |

The following theorem is a strengthening of a theorem from [L1]. Leung’s
statement is that the Orlicz sequence space hjy; does not admit a LFC norm if
M satisfies the condition below.

THEOREM 9: Let M be a non-degenerate Orlicz function for which there exists
a sequence {t,} decreasing to 0 such that

M(Kty)

W<OO, for all 0 < K < oc.

sup
n
Then the Orlicz sequence space hys does not admit any (even non-continuous)
LFC bump function.

Proof. Suppose that hj; admits some LEC bump b. Without loss of generality
we may assume that b = y4 for some set 0 € A C Bx (by shifting, scaling
and composing with a suitable function) and that b is LFC-{e}}. (Since hys is
co-saturated by [J, Theorem 15] (see also [PWZ]), it does not contain ¢;. As
{e;} is unconditional, it is shrinking by James’s theorem. Now consider bo T,
where T: X — X is an equivalence isomorphism of the bases {z;} and {e;}
from Theorem 3.)

Notice, that the vectors with coordinates in the set {¢,} U{0} have the prop-
erty of “boundedly completeness”: If HZfZl tmieiH < 1 for all £ € N, where
m; € NU {0} are not necessarily distinct (we put to = 0), then > 2 ¢, €;
converges in hys. Indeed, it follows that Zle M (tm,;) <1 for all k € N. For

7
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all 0 < K < oo and all k£ € N,

k

MKtT)’L' S TaAr/s N\
; (tm,) < sup =S

Consequently, >>7° ) M (Ktp,) < ooforall0 < K < oo, and the sum Y .2, . €;
converges in hjy.

k
M(Kt,) ZM(tmi) < slip %

We construct a sequence {z;} C A by induction. Put zyp = 0 € A and define
natural numbers mg = ng = 1. If mp_1 € N, np_1 € N and 2,1 € A are
already defined, we put

My = {(m,n) € N*, m >my_1,n>np_ and xx_1 + tme, € A}

As b depends only on some finite subset of {e;} on a neighbourhood of z5_1, and
tm — 0, we can see that My # 0. Let (myg,ng) = min M}, in the lexicographic
ordering of N? and put zx = _1 + tim, en, -

Since {xx} C A C Bx and z = Zle tm;€n;, by the above argument
xr — ¢ € hy. We can find 6 > 0 and N € N so that b depends only
on {ef}i«cny on U(x,d). Because zj converges, we have mj — oo and so
there is j € N such that z; € U(x,6/2), [[tm,e1] < 6/2, mj < mjy1 and
nj > N. Then x; + tpy,en; 41 € A and therefore (mj;,n; +1) € M;,. But
(mj,n; +1) < (mjq1,n541), which is a contradiction. |

In [L1], Leung constructed a cp-saturated Orlicz sequence space satisfying the
condition in Theorem 9. Therefore, we have the following corollary:

COROLLARY 10: Leung’s space is a separable cy-saturated Asplund space that
does not admit any (even non-continuous) LFC bump function.

The main construction of this paper is contained in the next theorem:.

THEOREM 11: Let M be a non-degenerate Orlicz function for which there exist
sequence Fy, C (0, 1] such that

(i) limg—oo(sup Fy) =0,

(ii) there is a sequence Ky, > 1 such that

im MER) 00
=0+ M(t)
t¢ Fy

(iii) there is a K > 1 and a sequence Cj, — oo such that M (Kt) > Cy M (t)
for all t € Fy.
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Then there exists a C*°-smooth LFC-{e}} lattice bump function on the Orlicz

sequence space hyy.

Proof. Without loss of generality we may assume that M (1) =1 (i.e. |le1]] = 1)
and C, > C7 > 0 for any k € N.

For each t € F,\ {0} choose ef > 0 such that M(s) < 2M (t) and t/2 < s < 2t
if |s —t| < eF. Define Gy, = Userm o (t — eF t 4+ eF). Then each G, is open,
G D (Fr \ {0}) and sup Gy < 2sup Fi. Moreover, for any s € Gy the choice
of an appropriate ¢t € F \ {0} from the definition of Gy yields M(2Ks) >
M(Kt) > CipM(t) > Cr,M(s)/2 (using (iii) and the continuity of M). So, if we
multiply K by 2 and each Cy by 1/2 and denote these new constants K and
C} again to avoid carrying unnecessary factors, we have

(9) klim (sup Gi) =0,
(10) M(Kt) > CpyM(t) for all t € Gj.

Let us define a sequence of continuous functions ¢y on [0,400) such that
0 < @r(t) <t, pr(t) =0 for t € Fy, and @i (t) =t for t ¢ Gi, and a mapping
dr: har — har by ¢p(@) = (pr(|zi])) for # = () € hy. (We can take
for example @y (t) = tdist(t,Fk)/(dist(t,Fk) + dist(¢, R \ Gk)) for t > 0 and
er(0) =0.)

Fix k € N.

First, observe that the mapping ¢ : har — has is continuous: Choose x € hjs
and € > 0 and find n € N such that |R,z|| < /8. As ¢y, is continuous, there
is 0 > 0 such that |[z;] — |y;|| < & implies |¢r(|z:]) — @r(lyi])| < €/(2n) for all
1 <i<n. Wehave ||z;] — |yil| < |z — il = [l(z — y)ies]| < [|# — yl|. (The last
inequality uses the fact that the norm [|-|| is a lattice norm.) Thus, whenever
[l — y|| < min{d,e/4},

161(2) = ok < 1Pnlr (@) — du (W)l + [ Bnr(z) — o))l
< Z\wk(lwil) — r(yiD)] + [ Bnon (@) + | Rndi (y)]

<e/2+[|Rnz| + [ Ruyll
<e/24 [[Rnz| + | Rnx|| + | Rn(z — y)|
<e/2+¢/8+¢c/8+¢c/d=c¢c.
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The third and the fifth inequality follow again from the fact that the norm ||-||
is lattice.

CLAIM 1: There is a non-increasing sequence {n*} C R satisfying n* < 2 and
lim,, o 7% = 1, such that for each x € hy; for which ¢x(x) # 0 there is § > 0
and ng € N such that for any y € U(x,d) we have

—

nﬁy(Pngb/k(y\)) > v(¢r(y)) for all n > ny.

We will construct the sequence 775 as follows: If (0,a) C F}, for some a > 0,
then any non-increasing sequence 1% — 1 such that 1 < nf <2 for alln € N
w/ﬂl\do. Inde&iihen there is ng € N such that |z;| < a/2 for i > ng and hence
Pk(y) = Pry¢r(y) whenever [lz —y|| < a/2.

Otherwise, put b, = inf{”@éf((t’“)t) 0<t< /M-1(1) t¢ Fk}. By our as-
sumption, b, < oo for all n € N. Notice, that b, is non-decreasing and, by (ii),
b, — co. Define n*¥ = min{2, (1 — b;1/2)*1}. It is trivial to check that 7k is
non-increasing and 7% — 1.

Define a mapping Qx: har — hy by Qu(x); = |x;| if |z ¢ Fr, Qr(z); =0
otherwise.

Now choose z € hy for which ¢ (z) # 0. By Lemma 7 there is 0 < § < ﬁ
such that v(¢x(y)) > $v(¢k(x)) if [[# — y|| < 6. Find ng € N such that 7} =
(=027 b0 < (@), | Ruw]| < gy and M71(F) < 1/(lal] + 6)?
for n > ng. Fix n > ng and y € hys such that ||z — y|| < §. Using Lemma 5(b)

and the fact that the canonical norm on hj; is a symmetric lattice norm, we
have

|BaQi®)| < IRaQu)| < [ Rull < [ Buall + | Rulx = )| < 1/ K.

As 302 1M(Qk( )il 1yl < 3252 Myl /llyll) = »(y/llyl) = 1 and the
sequence Qk( ); is non-increasing, it follows that Qk(y)z/ lyl| < M~*(1/i) for

any ¢ € N. From the definition of ng we obtain CZ(\) < |lyl| M~ (1/2) <

(||| + 0)M~1(1/i) < /M—1(1/i) for i > ng. Notice further that Qk( ); & F
for any ¢ € N, thus by the definition of b,, and (11) we have

1>v (KkRan ) ZM<Kka ) Zb M(Qk )

i>n i>n

anZM(mi),

i>n
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which together with the easily checked inequality qb/k(y\)z < C,m ;foranyi e N

implies
> M (@) < T (@) ) <o

Notice that by the deﬁnltlon of § and ng and by the symmetry of v we have
V(qbk( )) > by /% and therefore (use this fact for the second inequality)

(Pu(9) ZM@ >ZM¢k ) -5

— 1 —

= ) = 5 > (1= B A(Gel) = —v(Gu).

n n

which proves the claim.

Choose an arbitrary sequence {75} C R decreasing to 1. Let us define a
sequence of functions gi: hpyr — R by

gk (%) = 1/Cr + sup Yy (P i ().

CLAM 2: Each g is a LFC-{e}} function on {z € hps, ¢r(x) # 0} and con-
tinuous on hpy.

Indeed, for a fixed k¥ € N and = € hy, ¢r(z) # 0, choose an appropriate
6 and ng from Claim 1. Let N > ng be such that 7k+n77§ < Yk+n, Whenever
n > N. Then for y € U(x,d) and n > N we have

—

Vetno o U (Pao 08 (1)) > Vot EV (G5 (©)) > ey nnv(Pudi(y))

and hence
_ k FRIRY
(12) ge(y) = 1/Cy + ax, Vtn IV (Pndr(y))-

By Lemma 6 there is a neighbourhood V' of ¢y (z) and a finite A C N such that
the function maxi<,<n Ye+nniv(P,Z) depends only on {e}}ica on V. But
since ¢y, is continuous, there is a neighbourhood U of z, U C U(xz, d), such that
¢x(U) C V. Further, as ¢x(y); = ¢r(z); whenever y; = z; for any i € N, the
function gi depends only on {e}}ica on U.

Moreover, each gi is continuous on hjs: Using the continuity of ¢, Lemma
5(d) and (12) we can see that gy is continuous on {z € hys, ¢r(x) # 0}. On
the other hand,

1/Cr < gr(x) < 1/Cr + mnfv(ow()),
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and the continuity of gi at any x with ¢ (z) = 0 follows from the continuity of
¢ and the properties of v.

Notice further that, since v is lattice,

(13) gx(z) < 1/Ck + vty (z),

and as gi(z) > 1/Cy + fykJrnn,’jl/(PnCI)/k@) for each n € N, the continuity of v
implies

(14) ge(x) > 1/Cr + v(dr(2)),
for any x € hys and any k£ € N.
CramM 3: For each x € hps there is § > 0 and ky € N such that for any
y € U(x,9) and k > ko we have
v(y) <1/Cr + v(dr(y))-

Indeed, choose © € hpr. Let n € N be such that |Ryz|| < 1/(3K) and
0 < d < 1/(3K) such that moreover § < 2 min{|z;| : @; # 0,4 < n} if P,z #0.
Pick any y € hys for which ||z —y|| < 6. Notice that if |y;| < 0 then either
x;=0o0ri>n. Let Ay ={i: 2; =0}, Ay ={i:i>n}. Then

1
1Pavaxyll < [Payyll + [ Byl < [[Pay (y = 2)]| + [ Buzll + | Bn(z = y)l| < 2

Therefore we have >, 5 M (K |y;|) < 1. By (9) we can find ko € N such that
Gr, C (0,6) for all k > ko and hence, using (10),

> M(lyil) < 1/Cx, for all k > k.
lyil€G

It follows that, for any y € U(x,d) and k > ko,

ZM wil) = D My + > M(Jyi))

lyil€Gk ly:|€Gx
=S M+ Y M)
lyi|l€G lyi| ¢ G

+ZM% + (B (y))-
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Finally let us define a function g: hy; — R by
g9(x) = sup Vegk ().

Choose 0 # = € hjs and find § and kg from Claim 3. Since v is continuous, we
may also assume that v(y) > v(z)/2 if ||z — y|| < 0. There is N € N such that
27/ (V(2)Cr) + VY < ko for k > N. Then for any y € U(z,§) and k > N we
have (using first (13), then the definition of N, Claim 3 and finally (14))

(15)
’}/kgk(y) < fyk/ck + ’Yz%ﬁf”(y) < fYkoV(y) < fYko/CkU + ’ykoy((ﬁko (y)) < Yo ko (y)

This means that
(16) 9(y) = sup Yegr(y) = Ilglgangwk(y)

for y € U(x, ). In particular, since each gy is continuous on hyy, it follows that
g is continuous on hys \ {0}. On the other hand, for any y € hyy,

71/C1 < mg1(y) < g(y) < 1/C1+ 277w (y),

(the last inequality follows from (13)) and the continuity of v implies that ¢ is
continuous at 0 and hence on the whole of hjy;.

Let us define a set D = {z € hyps, g(x) > v1/C1}. Choose any = € D and find
an appropriate N and § for this x as above. Let A={k : 1 <k < N, ¢p(x)#0}.
Ifke{l,...,N}\ A, then

gk (®) = 1 /Cr < 11/C1 < g(x).

By the continuity of all ¢, gr and g, there is a neighbourhood U of x, U C
U(x,0d), such that ¢ (y) #0for k € A and yegr(y) < g(y) fork € {1,...,N}\ A
whenever y € U. Thus, by (16), g(y) = maxgea Yxgx(y) for y € U. Since each
gk, k€ A, is LFC on U, so is g. Therefore g is LFC on D.

From the last two inequalities in (15) we can see that g(x) > v(z) for any
x € hpr. Therefore g(z) > ||z|| on {x € har : ||z]] > 1} and we can compose
g with a suitable real continuous function to obtain a desired continuous LFC
bump. To finish the proof, it remains to apply Theorem 4. |

THEOREM 12: There is a non-degenerate Orlicz function M such that

< oo, forany K >1,
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yet the corresponding Orlicz sequence space hys admits a C*°-smooth LEC-{e}}
lattice bump.

Proof. Suppose we have a sequence b, > 1, n > 0. For n = 0,1,2,..., put
an = [1h_oby and let M(t) be a piecewise linear continuous function on
[0,00), such that M(0) = 0, M'(t) = a,, for 2=*D < ¢t < 27" and M'(t) = 1
for t > 1. Clearly, this is a non-degenerate Orlicz function and the constants b,
determine the ratio of the slopes of M on the two consecutive dyadic intervals.

Suppose that j € NU {0} and 2=(»+1) < ¢ < 27" for some n > j. Then
2072, i < M2 < M(27t) < M(297™) < 207 "a,, .

Hence, for n > j > 2,

n+1
(17) H bm S < 2J+2 H b
m=n—j+2 m=n—j+1

If F); is chosen to be [J,,c;, [2-(+1) 2=m) for some I}, C N, then for conditions
(1) to (iii) in Theorem 11 to hold, it is sufficient to require
(a) limg_,oo min Iy, = oo,
(b) For each k € N, there exists j; € N such that
nh—>n<}o max{by—j,,...,bn} = 00,
ne¢ly
(¢) limg— oo mingey, by = 0.
Indeed, (a) implies (i). If ¢ € (0,1)\ Fy, then there is some n ¢ Ij such that
t € 27+ 27") and thus (17) together with (b) implies (ii) for Kj = 27++2.
Finally, (17) together with (c) implies (iii) for K = 4 and C = minpey, by. On
the other hand, condition

(d) 1inniiol<13fmax{bn,j, obpl<ocoforalljeN

with (17) ensures that liminf; o4 M((t;f) < oo for any K > 1.

Now we construct a sequence b,, > 1, n > 0 and a sequence [, C N satisfying
conditions (a) to (d). Choose a non-decreasing sequence {c,} C R such that
cp>1land ¢y —00. Fori=0,1,2,...,7=0,...,2and k=0,...,7+ 1, let

i—1 I[+1 7

n(i,j,k)=>_ Y (m+1)+ > (m+1)

=0 m=1 m=1
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and define {b,}72q by bnij0) = ¢ and bug g = ¢ for k= 1,...,5 + 1.
The sequence {b,} fills a triangular table, where the index n = n(i,j,k) is
interpreted as follows: i counts the rows, by j we index groups of columns,
where the j-th group consists of j + 2 columns, and k is an index of a column
in the j-th group. So we have the following table

bo b

by b3 by b5 b

bz bs  bg  big b1 bz biz by bis

bis biz  bis big bao  bar baa baz bas  bas b bar bag bag

with the values

Co €o
C1 Co 1 €1 €
C2 Co C2 €1 C C2 C2 C2 C2
C3 Co c3 €1 C1 C3 C2 C2 C2 3 €3 C3 C3 C3
For any j € N we have max{by,; j 1), - - -, bn(ijj+1)} = ¢; for alli > j and (d) is

clearly satisfied.

Now let I, = Up_i 1 Use,, {n(i,m,1),...,n(i,m,m + 1)} for k € N,
i.e. I consists of all the columns in the table starting with the (k — 1)-th
group but without the first column in each group. Condition (a) obviously
holds. If n(i,j,l) ¢ Iy, then I < j4+ 1 < k or Il = 0 but in both cases

max{ by, (i ji)—k+1>- - On(ijil)} = On(ij0) = ¢ and hence (b) is satisfied.
Finally, ming,ej, by, = cx—1 implies (c). ]
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