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ABSTRACT

We present a construction of an Orlicz space admitting a C∞-smooth

bump which depends locally on finitely many coordinates, and which is

not isomorphic to a subspace of any C(K), K scattered. In view of the

related results this space is possibly not isomorphic to a polyhedral space.

1. Introduction

In the present paper we investigate the properties of Orlicz sequence spaces

admitting bump functions that depend locally on finitely many coordinates

(LFC).

The first use of the LFC notion for a function was the construction of C∞-

smooth and LFC renorming of c0, due to Kuiper, which appeared in [BF]. The
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LFC notion was explicitly introduced and investigated in the paper [PWZ] of

Pechanec, Whitfield and Zizler. In their work the authors have proved that every

Banach space admitting a LFC bump is saturated with copies of c0, providing

in some sense a converse to Kuiper’s result. Not surprisingly, it turns out that

the LFC notion is closely related to the class of polyhedral spaces, introduced

by Klee [K] and thoroughly investigated by many authors (see [JL, Chapter 15]

for results and references). (We note that polyhedrality is understood in the

isomorphic sense in this paper.) Indeed, prior to [PWZ], Fonf [F1] has proved

that every polyhedral Banach space is saturated with copies of c0. Later, it was

independently proved in [F2] and [Haj1] that every separable polyhedral Banach

space admits an equivalent LFC norm. Using the last result Fonf’s result is a

corollary of [PWZ]. The notion of LFC has been exploited (at least implicitly) in

a number of papers, in order to obtain very smooth bump functions, norms and

partitions of unity on nonseparable Banach spaces, see e.g. [To], [Ta], [DGZ1],

[GPWZ], [GTWZ], [FZ], [Hay1], [Hay2], [Hay3], [S1], [S2], [Haj1], [Haj2], [Haj3]

and the book [DGZ]. In fact, it seems to be the only general approach to

these problems. The reason is simple; it is relatively easy to check the (higher)

differentiability properties of functions of several variables, while for functions

defined on a Banach space it is very hard.

For separable spaces, one of the main known results is that a separable Banach

space is polyhedral if and only if it admits a LFC renorming (resp., C∞-smooth

and LFC renorming), [Haj1]. However, this smoothing up result is obtained

by using the boundary of a Banach space, rather than through some direct

smoothing procedure. Another recent result ([HJ1]) is that a separable Banach

space with a (shrinking) Schauder basis has a C∞-smooth and LFC bump

function whenever it has a continuous LFC bump. This seems to be the first

relatively general result in this direction.

The main result of the paper, contained in Section 4, is a certain rather subtle

construction of an Orlicz sequence space having a C∞-smooth and LFC bump

function, which we suspect to be non-polyhedral. Such an example is of course

needed to justify the whole theory, since in the polyhedral case the smoothing

up (and structural) results are well-known and easier. In fact, our paper, and in

particular the example was motivated by the beautiful theory of polyhedrality

for separable Banach spaces with Schauder basis, and especially Orlicz sequence

spaces, developed by Leung in [L1] and [L2]. The key result of these works is

the following theorem.
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Theorem ([L2]): The following statements are equivalent for every non-dege-

nerate Orlicz function M :

(i) There exists a constant K > 0 such that limt→0+ M(Kt)/M(t) = ∞.

(ii) The Orlicz sequence space hM is isomorphic to a subspace of C(ωω).

(iii) The Orlicz sequence space hM is isomorphic to a subspace of C(K) for

some scattered compact K.

All spaces satisfying (ii) are polyhedral, and Leung conjectured that con-

versely all polyhedral Orlicz sequence spaces fall under this description. There

is a strong evidence supporting this idea. First, Theorem 8, part of which is

also in Leung’s paper, shows that the naturally defined LFC renormings exist

precisely for those spaces. Second, negating the condition in (i) we obtain the

following formula

(∀K > 0)(∃{tn}
∞
n=1, tn ↘ 0) lim

n→∞

M(Ktn)

M(tn)
< ∞.

Reversing the order of the quantifiers we obtain the following stronger (less

general) condition

(∃{tn}
∞
n=1, tn ↘ 0)(∀K > 0) lim

n→∞

M(Ktn)

M(tn)
< ∞.

Leung proved that Orlicz sequence spaces satisfying the last condition are not

polyhedral (although they may be c0 saturated).

Thus Leung’s theorem above is a near characterisation of polyhedrality for

Orlicz sequence spaces, the gap lying in the exchange of quantifiers. Our exam-

ple of an Orlicz sequence space with C∞-smooth and LFC bump lies strictly in

between the above conditions. Therefore, our space is either a non-polyhedral

space admitting a LFC bump (we are inclined to believe this alternative), or

Leung’s polyhedral conjecture is false.

We refer to [FHHMPZ], [LT] and [JL] for background material and results.

2. Preliminaries

We use a standard Banach space notation. If {ei} is a Schauder basis of a Ba-

nach space, we denote by {e∗i } its biorthogonal functionals. Pn are the canon-

ical projections associated with the basis {ei}, P ∗
n are the operators adjoint

to Pn, i.e. the canonical projections associated with the basis {e∗i }. Given a

set A ⊂ N we denote by PA the projection associated with the set A, i.e.
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PAx =
∑

i∈A e∗i (x)ei. By Rn we denote the projections Rn = I − Pn, where I

is the identity operator. For a finite set B, |B| denotes the number of elements

of B. U(x, δ) is an open ball centered at x with radius δ.

The notion of a function, defined on a Banach space with a Schauder ba-

sis, which is locally dependent on finitely many coordinates was introduced in

[PWZ]. The following definition is a slight generalisation which was used by

many authors.

Definition 1: Let X be a topological vector space, Ω ⊂ X an open subset, E be

an arbitrary set, M ⊂ X∗ and g : Ω → E. We say that g depends only on M

on a set U ⊂ Ω if g(x) = g(y) whenever x, y ∈ U are such that f(x) = f(y) for

all f ∈ M . We say that g depends locally on finitely many coordinates

from M (LFC-M for short) if for each x ∈ Ω there are a neighbourhood U ⊂ Ω

of x and a finite subset F ⊂ M such that g depends only on F on U . We

say that g depends locally on finitely many coordinates (LFC for short) if it is

LFC-X∗.

We may equivalently say that g depends only on {f1, . . . , fn} ⊂ X∗ on U ⊂ Ω

if there exist a mapping G : Rn → E such that g(x) = G(f1(x), . . . , fn(x)) for

all x ∈ U . Notice, that if g : Ω → E is LFC and h : E → F is any mapping,

then also h ◦ g is LFC.

The canonical example of a non-trivial LFC function is the sup norm on c0,

which is LFC-{e∗i } away from the origin. Indeed, take any x = (xi) ∈ c0, x 6= 0.

Let n ∈ N be such that |xi| < ‖x‖∞ /2 for i > n. Then ‖·‖∞ depends only on

{e∗1, . . . , e
∗
n} on U(x, ‖x‖∞ /4).

A norm on a normed space is said to be LFC, if it is LFC away from the

origin. Recall that a bump function (or bump) on a topological vector space X

is a function b : X → R with a bounded non-empty support.

Let X be a Banach lattice. We say that a function f : X → R is a lattice

function if it satisfies either f(x) ≤ f(y) whenever |x| ≤ |y|, or f(x) ≥ f(y)

whenever |x| ≤ |y|. Recall that a Banach space X with an unconditional basis

{ei} has a natural lattice structure defined by
∑

aiei ≥ 0 if and only if ai ≥ 0

for all i ∈ N.

The word “coordinate” in the term LFC originates of course from spaces with

bases, where LFC was first defined using the coordinate functionals. In order to

apply the LFC techniques to spaces without a Schauder basis, the notion had

to be obviously generalised using arbitrary functionals from the dual. However,
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as shown in [HJ1], the generalisation does not substantially increase the supply

of LFC functions on Banach spaces with a Schauder basis, and we can always in

addition assume that the given LFC function in fact depends on the coordinate

functionals. This fact is not only interesting in itself; it is the main tool for

smoothing up LFC bumps on separable spaces with basis.

The following results from [HJ1] will be needed in the sequel.

Lemma 2: Let X be a Banach space with a Schauder basis {ei} and E be an

arbitrary set. Then f : X → E is LFC-{e∗i } if and only if for each x ∈ X there

is δ > 0 and n0 ∈ N such that f(y) = f(Pny) whenever ‖x − y‖ < δ and n ≥ n0.

Theorem 3: Let E be a set, X be a Banach space with a shrinking Schauder

basis {ei}, g : X → E be a LFC mapping and ε > 0. Then there is a (shrinking)

Schauder basis {xi} of X , (1 + ε)-equivalent to {ei}, such that g is LFC-{x∗
i }.

Theorem 4: Let X be a Banach space with an unconditional Schauder basis

{ei}, which admits a continuous LFC bump. Then X admits a C∞-smooth

LFC-{e∗i } lattice bump.

3. Spaces with symmetric Schauder bases

Let X be a Banach space with a symmetric Schauder basis. In such spaces it is

possible to define a notion of the non-increasing reordering, which will be

one of the main tools in the sequel. For any x ∈ X , x = (xi), let us denote by

x̂ a vector in X with its coordinates formed by the non-increasing reordering

of the sequence (|xi|). Notice that we can view X as a linear subspace of c0

through the natural “coordinate” embedding. In the following lemma we gather

some simple properties of this reordering which will be used later.

Lemma 5: Let X be a Banach space with a symmetric Schauder basis, x, y ∈ X

be arbitrary.

(a) Let ‖·‖ be a symmetric lattice norm on X . Then
∣∣‖Pkx̂‖ − ‖Pkŷ‖

∣∣ ≤
‖x − y‖ for any k ∈ N.

(b) R̂nx̂ ≤ R̂nx in the lattice sense for any n ∈ N.

(c) ‖x̂ − ŷ‖∞ ≤ ‖x − y‖∞.

(d) Let ‖·‖ be a lattice norm on X such that the basis is normalised. Then

the mapping x 7→ Pnx̂ is n-Lipschitz for any n ∈ N.
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Proof. (a) Consider a set A ⊂ N, |A| = k, such that P̂Ax = Pkx̂. Since ‖·‖ is

symmetric and lattice, ‖Pkx̂‖ = ‖PAx‖ and ‖Pkŷ‖ ≥ ‖PAy‖. This implies that

‖Pkx̂‖ − ‖Pkŷ‖ ≤ ‖PAx‖ − ‖PAy‖ ≤ ‖PA(x − y)‖ ≤ ‖x − y‖.

(b) Let A ⊂ N, |A| ≤ n be such that R̂nx = ŵ, where w = x̂ − PAx̂. We put

z = Rnx̂. Then ẑi = x̂i+n for i ∈ N. Let π : N → N be a one to one mapping

such that ŵi = wπ(i). Then ŵi = x̂π(i) for i ∈ N. As i ≤ π(i) ≤ i + n, it follows

that ẑi = x̂i+n ≤ x̂π(i) = ŵi.

(c) Let π : N → N and σ : N → N be one to one mappings such that x̂i = |xπ(i)|

and ŷi = |yσ(i)|. Pick any n ∈ N. There is k ≤ n such that |yπ(k)| ≤ |yσ(n)|.

(Otherwise there would be at least n coordinates of y for which their absolute

value is greater than |yσ(n)| which is impossible.) Consequently, x̂n − ŷn =

|xπ(n)| − |yσ(n)| ≤ |xπ(k)| − |yπ(k)| ≤ |xπ(k) − yπ(k)| ≤ ‖x − y‖∞.

(d) Using the fact that the basis is normalised, then (c) and then the fact

that ‖·‖ is lattice we obtain ‖Pnx̂ − Pnŷ‖ = ‖Pn(x̂ − ŷ)‖ ≤
∑n

i=1 |(x̂ − ŷ)i| ≤

n ‖x̂ − ŷ‖∞ ≤ n ‖x − y‖∞ ≤ n ‖x − y‖.

This is the key lemma:

Lemma 6: Let X be a Banach space with a symmetric Schauder basis {ei},

Φ: X → R be a continuous function such that Φ(x) > 0 if x 6= 0 and {γn} ⊂ R

be a sequence decreasing to 1. For any N ∈ N, define

ΨN (x) = max
1≤n≤N

γnΦ(Pnx̂).

Then each function ΨN is LFC-{e∗i } on X \ {0}.

Proof. Without loss of generality we may assume that ‖·‖ is symmetric and

lattice. Let N ∈ N and x ∈ X \ {0} be given. We claim that there exist

a neighbourhood V of x and N1 ∈ N such that x̂N1
> x̂N1+1 and ΨN(y) =

Ψmin{N,N1}(y) for all y ∈ U . If |suppx| ≥ N , then there exists N1 ≥ N such

that x̂N1
> x̂N1+1 and the claim follows. Otherwise, find N1 < N such that

x̂N1
> x̂N1+1 = 0. Then choose 0 < δ < x̂N1

/2 such that

|Φ(z) − Φ(x̂)| <
γN1

− γN1+1

2γ1
Φ(x̂)

whenever ‖z − x̂‖ < (N1 + 1)δ. Denote B = suppx and notice that |B| = N1.

If ‖x − y‖ < δ, i ∈ B and j /∈ B, then

|yi| ≥ |xi| − δ ≥ x̂N1
− δ > 2δ − δ = δ = |xj | + δ ≥ |yj|
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and hence

‖RN1
ŷ‖ =

∥∥PN\By
∥∥ =

∥∥PN\B(y − x)
∥∥ ≤ ‖y − x‖ < δ.

Thus, for any n ≥ N1,

‖Pnŷ − x̂‖ = ‖Pnŷ − PN1
x̂‖ ≤ ‖RN1

ŷ‖ + ‖PN1
ŷ − PN1

x̂‖

< δ + N1 ‖ŷ − x̂‖∞ ≤ δ + N1 ‖ŷ − x̂‖ < (N1 + 1)δ.

(For the last but one inequality use Lemma 5(c).) It follows from the choice of

δ that for n > N1 we have

γnΦ(Pnŷ) < γn

(
1 +

γN1
− γN1+1

2γ1

)
Φ(x̂)

≤ γN1+1

(
1 +

γN1
− γN1+1

2γN1+1

)
Φ(x̂)

=
γN1

+ γN1+1

2
Φ(x̂).

On the other hand,

γN1
Φ(PN1

ŷ) > γN1

(
1 −

γN1
− γN1+1

2γ1

)
Φ(x̂)

≥ γN1

(
1 −

γN1
− γN1+1

2γN1

)
Φ(x̂)

=
γN1

+ γN1+1

2
Φ(x̂).

This means that ΨN(y) = max1≤n≤N1
γnΦ(Pnŷ) for ‖x − y‖ < δ, which proves

the claim.

Using N1 and V from the claim, let ε = (x̂N1
− x̂N1+1)/2. Choose A ⊂ N,

|A| = N1, such that PN1
x̂ = P̂Ax. If ‖x − y‖ < ε, then |yi| > |yj | whenever

i ∈ A and j /∈ A. Hence for 1 ≤ n ≤ N1 the mappings y 7→ Pnŷ depend only

on {e∗i }i∈A on U(x, ε). By the choice of N1, it follows that ΨN depends only

on {e∗i }i∈A on V ∩ U(x, ε).

4. Orlicz Sequence Spaces

This section contains the main result of the paper, namely a construction of

an Orlicz sequence space hM with a C∞-smooth and LFC bump, which does

not embed into any C(K) space, K scattered compact. As explained in the

introduction, our space is possibly non-polyhedral. If so, it would be the first

separable example of a Banach space for which the best smoothness (in the wider
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sense) of its bumps exceeds the best smoothness of its renormings. Indeed, our

space has C∞-smooth renormings, but, if non-polyhedral, it would have no

LFC renormings. Up to now, the only examples (due to Haydon [Hay3], see

also [DGZ]) with a similar property are non-separable. Recall that Haydon’s

space has a C∞-smooth bump, but no equivalent Gâteaux smooth norm (and

in fact using basically the same proof one can conclude that it neither has an

equivalent LFC renorming).

For the basic properties of Orlicz sequence spaces we refer e.g. to [LT].

Let M be a non-degenerate Orlicz function and hM be the respective Orlicz

sequence space. We define a function ν : hM → [0,∞) by ν(x) =
∑∞

i=1 M(|xi|).

It is easily checked that this function is convex, symmetric and lattice, ν(0) = 0,

ν(x) > 0 for x 6= 0, and, by the definition of the norm in hM , ‖x‖ = 1 if and

only if ν(x) = 1. It follows from the convexity that ν(x) ≤ ‖x‖ for x ∈ BhM
,

while ν(x) ≥ ‖x‖ if ‖x‖ ≥ 1.

Lemma 7: The mapping µ : hM → `1 defined by µ(x) =
(
M(|xi|)

)
is continu-

ous. Thus the function ν(x) = ‖µ(x)‖`1
is continuous.

Proof. Suppose x ∈ hM and 0 < ε < 1 are given. Choose N ∈ N such that

‖RNx‖ < ε/2. Then, by the continuity of M , we can choose 0 < δ < ε/2

such that ‖PN (µ(x) − µ(y))‖`1
=

∑N
i=1 |M(|xi|) − M(|yi|)| < ε if ‖x − y‖ < δ.

Further, if ‖x − y‖ < δ, then ‖RNy‖ ≤ ‖RNx‖ + ‖RN (x − y)‖ ≤ ‖RNx‖ +

‖x − y‖ < ε and hence

‖µ(x) − µ(y)‖`1
≤ ‖PN (µ(x) − µ(y))‖`1

+ ‖RNµ(x)‖`1
+ ‖RNµ(y)‖`1

≤ ε + ν(RNx) + ν(RNy)

≤ ε + ‖RNx‖ + ‖RNy‖

< 3ε.

Let M be a non-degenerate Orlicz function such that there is a K > 1 for

which limt→0+ M(Kt)/M(t) = ∞. Leung in [L1] constructs a sequence {ηk}

of real numbers decreasing to 1 such that the norm on hM defined by |||x|||1 =

supk ηk ‖Pkx̂‖ has the property that for each x ∈ hM there is j ∈ N such that

|||x|||1 = |||Pjx|||1 and the supremum is attained at some n ∈ N. An immediate

consequence of this is that the norm |||x||| = supk η2
k ‖Pkx̂‖ is LFC-{e∗i }. To see

this, fix x ∈ hM \{0} and let n ∈ N be such that ηn ‖Pnx̂‖ = supk ηk ‖Pkx̂‖. Let

ε = ηn ‖Pnx̂‖ (ηn − ηn+1)/(η2
n + η2

n+1) and take y ∈ hM satisfying ‖x − y‖ < ε.
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Then, by Lemma 5(a),
∣∣‖Pkx̂‖ − ‖Pk ŷ‖

∣∣ < ε for any k ∈ N. Thus, for k > n,

η2
n ‖Pnŷ‖ > η2

n ‖Pnx̂‖ − η2
nε = ηn+1ηn ‖Pnx̂‖ + η2

n+1ε ≥ ηkηn ‖Pnx̂‖ + η2
kε

≥ η2
k ‖Pkx̂‖ + η2

kε

> η2
k ‖Pkŷ‖ ,

which implies that |||y||| = supk≤n η2
k ‖Pkŷ‖. Combining this with Lemma 6 we

obtain that |||·||| is LFC-{e∗i }.

Theorem 8 (Leung): Let M be a non-degenerate Orlicz function. There is

a sequence {ηk} of real numbers decreasing to 1 such that the norm on hM

defined by

|||x||| = sup
k

ηk ‖Pkx̂‖

is LFC-{e∗i } if and only if there is a K > 1 such that

(1) lim
t→0+

M(Kt)

M(t)
= ∞.

Proof. For the “if” part see the remark preceding the theorem. To show the

“only if” part (which also appeared in [L1], but not precisely formulated and

without proof), suppose that (1) does not hold and let {ηk} be any sequence

decreasing to 1. We will construct a vector x ∈ ShM
such that its coordinates

form a positive non-increasing sequence and ηk ‖Pkx‖ < 1 for each k ∈ N. Then

obviously |||x||| = 1, but |||Pnx||| = maxk≤n ηk ‖Pkx‖ < 1 for any n ∈ N and so

|||·||| is not LFC-{e∗i } by Lemma 2.

Let {Kn} be an increasing sequence of real numbers, Kn > 1 and Kn → ∞.

For each n ∈ N let Cn > 2 and {tnk}
∞
k=1 be such that limk→∞ tnk = 0 and

M(Kntnk ) < CnM(tnk ) for all k ∈ N. Let {εn} be a sequence of real numbers

such that 0 < εn < 1/2 and
∑∞

n=1 εnCn < ∞. Put m0 = 1 and find A > 0 such

that M(1/A) = 1 (which means ‖ei‖ = A for any i ∈ N).

We choose t1 ∈ {t1k} this way: Define

m1 = min

{
k : ηk

∥∥∥∥
k∑

i=1

t1ei

∥∥∥∥ ≥ 1

}
,

and choose t1 ∈ {t1k} small enough such that

M(t1) < ε2 and(2)

ηm1
< 1 +

ε2

1 − ε2

K1 − 1

C1 − 1
.(3)
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By the convexity of M we have

(4)

M(ηm1
t1) ≤

(
1 −

ηm1
− 1

K1 − 1

)
M(t1) +

ηm1
− 1

K1 − 1
M(K1t1)

<
(
1 −

ηm1
− 1

K1 − 1

)
M(t1) +

ηm1
− 1

K1 − 1
C1M(t1)

=
(
1 + (ηm1

− 1)
C1 − 1

K1 − 1

)
M(t1)

<
(
1 +

ε2

1 − ε2

)
M(t1) =

1

1 − ε2
M(t1),

where the last inequality follows from the inequality (3). By the definition of

m1 we have m1M(ηm1
t1) ≥ 1. Consequently, using this inequality together

with (4), m1M(t1) > m1(1 − ε2)M(ηm1
t1) ≥ 1 − ε2. Hence, by (2),

(m1 − 1)M(t1) > 1 − 2ε2.

We put x1 =
∑m1−1

i=1 t1ei. Notice that by the definition of m1 we have

1/ηm1−1 > ‖x1‖ ≥ 1/ηm1
− At1.

Let us continue by induction. Fix any j > 1. Suppose we have ti ∈ {tik},

mi ∈ N and xi ∈ hM already defined for all i < j such that

i∑

k=1

(mk − mk−1)M(tk) > 1 − 2εi+1,

1/ηmi−1 > ‖xi‖ ≥ 1/ηmi
− Ati and

xi =

i∑

l=1

ml−1∑

k=ml−1

tlek.

We choose tj ∈ {tjk} this way: Define

mj = min

{
k ≥ mj−1 : ηk

∥∥∥∥xj−1 +

k∑

i=mj−1

tjei

∥∥∥∥ ≥ 1

}
,

and choose tj ∈ {tjk} small enough such that

M(tj) < εj+1 and(5)

ηmj
< 1 +

εj+1

1 − εj+1
min

1≤i≤j

{Ki − 1

Ci − 1

}
.(6)
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Notice that this is possible since ‖xj−1‖ < 1/ηmj−1−1. Using again the convexity

of M , the fact that ti ∈ {tik} and (6), for any 1 ≤ i ≤ j we obtain

M(ηmj
ti) ≤

(
1 −

ηmj
− 1

Ki − 1

)
M(ti) +

ηmj
− 1

Ki − 1
M(Kiti)

<
(
1 −

ηmj
− 1

Ki − 1

)
M(ti) +

ηmj
− 1

Ki − 1
CiM(ti)

=
(
1 + (ηmj

− 1)
Ci − 1

Ki − 1

)
M(ti)

<
(
1 +

εj+1

1 − εj+1

)
M(ti) =

1

1 − εj+1
M(ti).

These estimates together with the definition of mj and xj−1 give

j−1∑

i=1

(mi − mi−1)M(ti) + (mj − mj−1 + 1)M(tj)

> (1 − εj+1)

( j−1∑

i=1

(mi − mi−1)M(ηmj
ti) + (mj − mj−1 + 1)M(ηmj

tj)

)

≥ 1 − εj+1,

so the use of (5) yields

(7)

j∑

i=1

(mi − mi−1)M(ti) > 1 − 2εj+1.

We put

xj =

j∑

i=1

mi−1∑

k=mi−1

tiek

and notice that, by the definition of mj ,

(8) 1/ηmj−1 > ‖xj‖ ≥ 1/ηmj
− Atj .

We have inductively constructed a sequence {xj} ⊂ hM given by the formula

above, such that ‖xj‖ < 1 and (7) holds for any j ∈ N. Choose any j > 1.

Since ‖xj‖ < 1, it follows that
∑j

i=1(mi −mi−1)M(ti) < 1 and comparing this

with (7) for j − 1 we obtain

(mj − mj−1)M(tj) < 2εj .
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This implies that xj → x ∈ hM . Indeed, suppose K > 0. Let n ∈ N be such

that Kn ≥ K. Then

∞∑

i=n

(mi − mi−1)M(Kti) ≤
∞∑

i=n

(mi − mi−1)M(Kiti)

≤
∞∑

i=n

(mi − mi−1)CiM(ti) < 2

∞∑

i=n

εiCi < ∞

and so by the basic properties of hM the vector x =
∑∞

i=1

∑mi−1
k=mi−1

tiek belongs

to hM . This means also that tj → 0 and thus from (8) we can conclude that

‖x‖ = lim ‖xj‖ = 1. Moreover, the construction of xj (namely, the choice of

mj) guarantees that ηk ‖Pkx‖ < 1 for each k ∈ N.

The following theorem is a strengthening of a theorem from [L1]. Leung’s

statement is that the Orlicz sequence space hM does not admit a LFC norm if

M satisfies the condition below.

Theorem 9: Let M be a non-degenerate Orlicz function for which there exists

a sequence {tn} decreasing to 0 such that

sup
n

M(Ktn)

M(tn)
< ∞, for all 0 < K < ∞.

Then the Orlicz sequence space hM does not admit any (even non-continuous)

LFC bump function.

Proof. Suppose that hM admits some LFC bump b. Without loss of generality

we may assume that b = χA for some set 0 ∈ A ⊂ BX (by shifting, scaling

and composing with a suitable function) and that b is LFC-{e∗i }. (Since hM is

c0-saturated by [J, Theorem 15] (see also [PWZ]), it does not contain `1. As

{ei} is unconditional, it is shrinking by James’s theorem. Now consider b ◦ T ,

where T : X → X is an equivalence isomorphism of the bases {xi} and {ei}

from Theorem 3.)

Notice, that the vectors with coordinates in the set {tn}∪{0} have the prop-

erty of “boundedly completeness”: If
∥∥∑k

i=1 tmi
ei

∥∥ ≤ 1 for all k ∈ N, where

mi ∈ N ∪ {0} are not necessarily distinct (we put t0 = 0), then
∑∞

i=1 tmi
ei

converges in hM . Indeed, it follows that
∑k

i=1 M(tmi
) ≤ 1 for all k ∈ N. For
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all 0 < K < ∞ and all k ∈ N,

k∑

i=1

M(Ktmi
) ≤ sup

n

M(Ktn)

M(tn)

k∑

i=1

M(tmi
) ≤ sup

n

M(Ktn)

M(tn)
.

Consequently,
∑∞

i=1 M(Ktmi
) < ∞ for all 0 < K < ∞, and the sum

∑∞
i=1 tmi

ei

converges in hM .

We construct a sequence {xk} ⊂ A by induction. Put x0 = 0 ∈ A and define

natural numbers m0 = n0 = 1. If mk−1 ∈ N, nk−1 ∈ N and xk−1 ∈ A are

already defined, we put

Mk = {(m, n) ∈ N
2; m ≥ mk−1, n > nk−1 and xk−1 + tmen ∈ A}.

As b depends only on some finite subset of {e∗i } on a neighbourhood of xk−1, and

tm → 0, we can see that Mk 6= ∅. Let (mk, nk) = minMk in the lexicographic

ordering of N2 and put xk = xk−1 + tmk
enk

.

Since {xk} ⊂ A ⊂ BX and xk =
∑k

i=1 tmi
eni

, by the above argument

xk → x ∈ hM . We can find δ > 0 and N ∈ N so that b depends only

on {e∗i }i<N on U(x, δ). Because xk converges, we have mk → ∞ and so

there is j ∈ N such that xj ∈ U(x, δ/2), ‖tmj
e1‖ < δ/2, mj < mj+1 and

nj > N . Then xj + tmj
enj+1 ∈ A and therefore (mj , nj + 1) ∈ Mj+1. But

(mj , nj + 1) < (mj+1, nj+1), which is a contradiction.

In [L1], Leung constructed a c0-saturated Orlicz sequence space satisfying the

condition in Theorem 9. Therefore, we have the following corollary:

Corollary 10: Leung’s space is a separable c0-saturated Asplund space that

does not admit any (even non-continuous) LFC bump function.

The main construction of this paper is contained in the next theorem.

Theorem 11: Let M be a non-degenerate Orlicz function for which there exist

sequence Fk ⊂ (0, 1] such that

(i) limk→∞(sup Fk) = 0,

(ii) there is a sequence Kk > 1 such that

lim
t→0+
t/∈Fk

M(Kkt)

M(t)
= ∞,

(iii) there is a K > 1 and a sequence Ck → ∞ such that M(Kt) ≥ CkM(t)

for all t ∈ Fk.
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Then there exists a C∞-smooth LFC-{e∗i } lattice bump function on the Orlicz

sequence space hM .

Proof. Without loss of generality we may assume that M(1) = 1 (i.e. ‖e1‖ = 1)

and Ck ≥ C1 > 0 for any k ∈ N.

For each t ∈ Fk \{0} choose εk
t > 0 such that M(s) < 2M(t) and t/2 < s < 2t

if |s − t| < εk
t . Define Gk =

⋃
t∈Fk\{0}

(t − εk
t , t + εk

t ). Then each Gk is open,

Gk ⊃ (Fk \ {0}) and supGk ≤ 2 sup Fk. Moreover, for any s ∈ Gk the choice

of an appropriate t ∈ Fk \ {0} from the definition of Gk yields M(2Ks) >

M(Kt) ≥ CkM(t) > CkM(s)/2 (using (iii) and the continuity of M). So, if we

multiply K by 2 and each Ck by 1/2 and denote these new constants K and

Ck again to avoid carrying unnecessary factors, we have

lim
k→∞

(sup Gk) = 0,(9)

M(Kt) ≥ CkM(t) for all t ∈ Gk.(10)

Let us define a sequence of continuous functions ϕk on [0, +∞) such that

0 ≤ ϕk(t) ≤ t, ϕk(t) = 0 for t ∈ Fk and ϕk(t) = t for t /∈ Gk, and a mapping

φk : hM → hM by φk(x) =
(
ϕk(|xi|)

)
for x = (xi) ∈ hM . (We can take

for example ϕk(t) = t dist(t, Fk)/
(
dist(t, Fk) + dist(t, R \ Gk)

)
for t > 0 and

ϕk(0) = 0.)

Fix k ∈ N.

First, observe that the mapping φk : hM → hM is continuous: Choose x ∈ hM

and ε > 0 and find n ∈ N such that ‖Rnx‖ < ε/8. As ϕk is continuous, there

is δ > 0 such that
∣∣|xi| − |yi|

∣∣ < δ implies
∣∣ϕk(|xi|) − ϕk(|yi|)

∣∣ < ε/(2n) for all

1 ≤ i ≤ n. We have
∣∣|xi| − |yi|

∣∣ ≤ |xi − yi| = ‖(x − y)iei‖ ≤ ‖x − y‖. (The last

inequality uses the fact that the norm ‖·‖ is a lattice norm.) Thus, whenever

‖x − y‖ < min{δ, ε/4},

‖φk(x) − φk(y)‖ ≤ ‖Pn(φk(x) − φk(y))‖ + ‖Rn(φk(x) − φk(y))‖

≤
n∑

i=1

∣∣ϕk(|xi|) − ϕk(|yi|)
∣∣ + ‖Rnφk(x)‖ + ‖Rnφk(y)‖

< ε/2 + ‖Rnx‖ + ‖Rny‖

≤ ε/2 + ‖Rnx‖ + ‖Rnx‖ + ‖Rn(x − y)‖

< ε/2 + ε/8 + ε/8 + ε/4 = ε.
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The third and the fifth inequality follow again from the fact that the norm ‖·‖

is lattice.

Claim 1: There is a non-increasing sequence {ηk
n} ⊂ R satisfying ηk

n ≤ 2 and

limn→∞ ηk
n = 1, such that for each x ∈ hM for which φk(x) 6= 0 there is δ > 0

and n0 ∈ N such that for any y ∈ U(x, δ) we have

ηk
nν(Pnφ̂k(y)) > ν(φ̂k(y)) for all n ≥ n0.

We will construct the sequence ηk
n as follows: If (0, a) ⊂ Fk for some a > 0,

then any non-increasing sequence ηk
n → 1 such that 1 < ηk

n ≤ 2 for all n ∈ N

will do. Indeed, then there is n0 ∈ N such that |xi| < a/2 for i ≥ n0 and hence

φ̂k(y) = Pn0
φ̂k(y) whenever ‖x − y‖ < a/2.

Otherwise, put bn = inf
{

M(Kkt)
M(t) ; 0 < t ≤

√
M−1( 1

n ), t /∈ Fk

}
. By our as-

sumption, bn < ∞ for all n ∈ N. Notice, that bn is non-decreasing and, by (ii),

bn → ∞. Define ηk
n = min{2, (1 − b

−1/2
n )−1}. It is trivial to check that ηk

n is

non-increasing and ηk
n → 1.

Define a mapping Qk : hM → hM by Qk(x)i = |xi| if |xi| /∈ Fk, Qk(x)i = 0

otherwise.

Now choose x ∈ hM for which φk(x) 6= 0. By Lemma 7 there is 0 < δ < 1
2Kk

such that ν(φk(y)) > 1
2ν(φk(x)) if ‖x − y‖ < δ. Find n0 ∈ N such that ηk

n =

(1 − b
−1/2
n )−1, b

−1/2
n < 1

2ν(φk(x)), ‖Rnx‖ < 1
2Kk

and M−1( 1
n ) ≤ 1/(‖x‖ + δ)2

for n ≥ n0. Fix n ≥ n0 and y ∈ hM such that ‖x − y‖ < δ. Using Lemma 5(b)

and the fact that the canonical norm on hM is a symmetric lattice norm, we

have

(11)
∥∥∥RnQ̂k(y)

∥∥∥ ≤ ‖RnQk(y)‖ ≤ ‖Rny‖ ≤ ‖Rnx‖ + ‖Rn(x − y)‖ < 1/Kk.

As
∑∞

i=1 M(Q̂k(y)i/ ‖y‖) ≤
∑∞

i=1 M(|yi| / ‖y‖) = ν(y/ ‖y‖) = 1 and the

sequence Q̂k(y)i is non-increasing, it follows that Q̂k(y)i/ ‖y‖ ≤ M−1(1/i) for

any i ∈ N. From the definition of n0 we obtain Q̂k(y)i ≤ ‖y‖M−1(1/i) ≤

(‖x‖ + δ)M−1(1/i) ≤
√

M−1(1/i) for i ≥ n0. Notice further that Q̂k(y)i /∈ Fk

for any i ∈ N, thus by the definition of bn and (11) we have

1 > ν
(
KkRnQ̂k(y)

)
=

∑

i>n

M
(
KkQ̂k(y)i

)
≥

∑

i>n

biM
(
Q̂k(y)i

)

≥ bn

∑

i>n

M
(
Q̂k(y)i

)
,
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which together with the easily checked inequality φ̂k(y)i ≤ Q̂k(y)i for any i ∈ N

implies ∑

i>n

M
(
φ̂k(y)i

)
≤

∑

i>n

M
(
Q̂k(y)i

)
≤

1

bn
.

Notice that by the definition of δ and n0 and by the symmetry of ν we have

ν(φ̂k(y)) > b
−1/2
n and therefore (use this fact for the second inequality)

ν(Pnφ̂k(y)) =

n∑

i=1

M(φ̂k(y)i) ≥
∞∑

i=1

M(φ̂k(y)i) −
1

bn

= ν(φ̂k(y)) −
1

bn
> (1 − b−1/2

n )ν(φ̂k(y)) =
1

ηk
n

ν(φ̂k(y)),

which proves the claim.

Choose an arbitrary sequence {γk} ⊂ R decreasing to 1. Let us define a

sequence of functions gk : hM → R by

gk(x) = 1/Ck + sup
n

γk+nηk
nν(Pnφ̂k(x)).

Claim 2: Each gk is a LFC-{e∗i } function on {x ∈ hM , φk(x) 6= 0} and con-

tinuous on hM .

Indeed, for a fixed k ∈ N and x ∈ hM , φk(x) 6= 0, choose an appropriate

δ and n0 from Claim 1. Let N ≥ n0 be such that γk+nηk
n < γk+n0

whenever

n > N . Then for y ∈ U(x, δ) and n > N we have

γk+n0
ηk

n0
ν(Pn0

φ̂k(y)) > γk+nηk
nν(φ̂k(y)) ≥ γk+nηk

nν(Pnφ̂k(y))

and hence

(12) gk(y) = 1/Ck + max
1≤n≤N

γk+nηk
nν(Pnφ̂k(y)).

By Lemma 6 there is a neighbourhood V of φk(x) and a finite A ⊂ N such that

the function max1≤n≤N γk+nηk
nν(Pn ẑ) depends only on {e∗i }i∈A on V . But

since φk is continuous, there is a neighbourhood U of x, U ⊂ U(x, δ), such that

φk(U) ⊂ V . Further, as φk(y)i = φk(z)i whenever yi = zi for any i ∈ N, the

function gk depends only on {e∗i }i∈A on U .

Moreover, each gk is continuous on hM : Using the continuity of φk, Lemma

5(d) and (12) we can see that gk is continuous on {x ∈ hM , φk(x) 6= 0}. On

the other hand,

1/Ck ≤ gk(x) ≤ 1/Ck + γkηk
1ν(φk(x)),
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and the continuity of gk at any x with φk(x) = 0 follows from the continuity of

φk and the properties of ν.

Notice further that, since ν is lattice,

(13) gk(x) ≤ 1/Ck + γkηk
1ν(x),

and as gk(x) ≥ 1/Ck + γk+nηk
nν(PnΦ̂k(x)) for each n ∈ N, the continuity of ν

implies

(14) gk(x) ≥ 1/Ck + ν(φk(x)),

for any x ∈ hM and any k ∈ N.

Claim 3: For each x ∈ hM there is δ > 0 and k0 ∈ N such that for any

y ∈ U(x, δ) and k ≥ k0 we have

ν(y) < 1/Ck + ν(φk(y)).

Indeed, choose x ∈ hM . Let n ∈ N be such that ‖Rnx‖ < 1/(3K) and

0 < δ < 1/(3K) such that moreover δ ≤ 1
2 min{|xi| : xi 6= 0, i ≤ n} if Pnx 6= 0.

Pick any y ∈ hM for which ‖x − y‖ < δ. Notice that if |yi| < δ then either

xi = 0 or i > n. Let A1 = {i : xi = 0}, A2 = {i : i > n}. Then

‖PA1∪A2
y‖ ≤ ‖PA1

y‖ + ‖Rny‖ ≤ ‖PA1
(y − x)‖ + ‖Rnx‖ + ‖Rn(x − y)‖ <

1

K
.

Therefore we have
∑

|yi|<δ M
(
K |yi|

)
< 1. By (9) we can find k0 ∈ N such that

Gk ⊂ (0, δ) for all k ≥ k0 and hence, using (10),

∑

|yi|∈Gk

M
(
|yi|

)
< 1/Ck, for all k ≥ k0.

It follows that, for any y ∈ U(x, δ) and k ≥ k0,

ν(y) =

∞∑

i=1

M(|yi|) =
∑

|yi|∈Gk

M(|yi|) +
∑

|yi|/∈Gk

M(|yi|)

=
∑

|yi|∈Gk

M(|yi|) +
∑

|yi|/∈Gk

M(φk(y)i)

<
1

Ck
+

∞∑

i=1

M(φk(y)i) =
1

Ck
+ ν(φk(y)).



184 PETR HÁJEK AND MICHAL JOHANIS Isr. J. Math.

Finally let us define a function g : hM → R by

g(x) = sup
k

γkgk(x).

Choose 0 6= x ∈ hM and find δ and k0 from Claim 3. Since ν is continuous, we

may also assume that ν(y) ≥ ν(x)/2 if ‖x − y‖ < δ. There is N ∈ N such that

2γk/(ν(x)Ck) + γ2
kηk

1 < γk0
for k > N . Then for any y ∈ U(x, δ) and k > N we

have (using first (13), then the definition of N , Claim 3 and finally (14))

γkgk(y) ≤ γk/Ck + γ2
kηk

1ν(y) < γk0
ν(y) < γk0

/Ck0
+ γk0

ν(φk0
(y)) ≤ γk0

gk0
(y).

(15)

This means that

(16) g(y) = sup
k

γkgk(y) = max
k≤N

γkgk(y)

for y ∈ U(x, δ). In particular, since each gk is continuous on hM , it follows that

g is continuous on hM \ {0}. On the other hand, for any y ∈ hM ,

γ1/C1 ≤ γ1g1(y) ≤ g(y) ≤ γ1/C1 + 2γ2
1ν(y),

(the last inequality follows from (13)) and the continuity of ν implies that g is

continuous at 0 and hence on the whole of hM .

Let us define a set D = {x ∈ hM , g(x) > γ1/C1}. Choose any x ∈ D and find

an appropriate N and δ for this x as above. Let A={k : 1 ≤ k ≤ N, φk(x) 6=0}.

If k ∈ {1, . . . , N} \ A, then

γkgk(x) = γk/Ck ≤ γ1/C1 < g(x).

By the continuity of all φk, gk and g, there is a neighbourhood U of x, U ⊂

U(x, δ), such that φk(y) 6= 0 for k ∈ A and γkgk(y) < g(y) for k ∈ {1, . . . , N}\A

whenever y ∈ U . Thus, by (16), g(y) = maxk∈A γkgk(y) for y ∈ U . Since each

gk, k ∈ A, is LFC on U , so is g. Therefore g is LFC on D.

From the last two inequalities in (15) we can see that g(x) > ν(x) for any

x ∈ hM . Therefore g(x) > ‖x‖ on {x ∈ hM : ‖x‖ ≥ 1} and we can compose

g with a suitable real continuous function to obtain a desired continuous LFC

bump. To finish the proof, it remains to apply Theorem 4.

Theorem 12: There is a non-degenerate Orlicz function M such that

lim inf
t→0+

M(Kt)

M(t)
< ∞, for any K > 1,
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yet the corresponding Orlicz sequence space hM admits a C∞-smooth LFC-{e∗i }

lattice bump.

Proof. Suppose we have a sequence bn ≥ 1, n ≥ 0. For n = 0, 1, 2, . . . , put

an =
∏n

m=0 b−1
m and let M(t) be a piecewise linear continuous function on

[ 0,∞), such that M(0) = 0, M ′(t) = an for 2−(n+1) < t < 2−n and M ′(t) = 1

for t > 1. Clearly, this is a non-degenerate Orlicz function and the constants bn

determine the ratio of the slopes of M on the two consecutive dyadic intervals.

Suppose that j ∈ N ∪ {0} and 2−(n+1) ≤ t ≤ 2−n for some n ≥ j. Then

2j−n−2an−j+1 ≤ M(2j−n−1) ≤ M(2jt) ≤ M(2j−n) ≤ 2j−nan−j.

Hence, for n ≥ j ≥ 2,

(17) 2j−2
n∏

m=n−j+2

bm ≤
M(2jt)

M(t)
≤ 2j+2

n+1∏

m=n−j+1

bm.

If Fk is chosen to be
⋃

n∈Ik
[2−(n+1), 2−n) for some Ik ⊂ N, then for conditions

(i) to (iii) in Theorem 11 to hold, it is sufficient to require

(a) limk→∞ min Ik = ∞,

(b) For each k ∈ N, there exists jk ∈ N such that

lim
n→∞
n/∈Ik

max{bn−jk
, . . . , bn} = ∞,

(c) limk→∞ minn∈Ik
bn = ∞.

Indeed, (a) implies (i). If t ∈ (0, 1) \ Fk, then there is some n /∈ Ik such that

t ∈ [2−(n+1), 2−n) and thus (17) together with (b) implies (ii) for Kk = 2jk+2.

Finally, (17) together with (c) implies (iii) for K = 4 and Ck = minn∈Ik
bn. On

the other hand, condition

(d) lim inf
n→∞

max{bn−j, . . . , bn} < ∞ for all j ∈ N

with (17) ensures that lim inft→0+
M(Kt)
M(t) < ∞ for any K > 1.

Now we construct a sequence bn ≥ 1, n ≥ 0 and a sequence Ik ⊂ N satisfying

conditions (a) to (d). Choose a non-decreasing sequence {cn} ⊂ R such that

cn ≥ 1 and cn → ∞. For i = 0, 1, 2, . . . , j = 0, . . . , i and k = 0, . . . , j + 1, let

n(i, j, k) =

i−1∑

l=0

l+1∑

m=1

(m + 1) +

j∑

m=1

(m + 1) + k



186 PETR HÁJEK AND MICHAL JOHANIS Isr. J. Math.

and define {bn}∞n=0 by bn(i,j,0) = ci and bn(i,j,k) = cj for k = 1, . . . , j + 1.

The sequence {bn} fills a triangular table, where the index n = n(i, j, k) is

interpreted as follows: i counts the rows, by j we index groups of columns,

where the j-th group consists of j + 2 columns, and k is an index of a column

in the j-th group. So we have the following table

b0 b1

b2 b3 b4 b5 b6

b7 b8 b9 b10 b11 b12 b13 b14 b15

b16 b17 b18 b19 b20 b21 b22 b23 b24 b25 b26 b27 b28 b29

. . . . . .

with the values

c0 c0

c1 c0 c1 c1 c1

c2 c0 c2 c1 c1 c2 c2 c2 c2

c3 c0 c3 c1 c1 c3 c2 c2 c2 c3 c3 c3 c3 c3

. . . . . .

For any j ∈ N we have max{bn(i,j,1), . . . , bn(i,j,j+1)} = cj for all i ≥ j and (d) is

clearly satisfied.

Now let Ik =
⋃∞

m=k−1

⋃∞
i=m{n(i, m, 1), . . . , n(i, m, m + 1)} for k ∈ N,

i.e. Ik consists of all the columns in the table starting with the (k − 1)-th

group but without the first column in each group. Condition (a) obviously

holds. If n(i, j, l) /∈ Ik, then l ≤ j + 1 < k or l = 0 but in both cases

max{bn(i,j,l)−k+1, . . . , bn(i,j,l)} ≥ bn(i,j,0) = ci and hence (b) is satisfied.

Finally, minn∈Ik
bn = ck−1 implies (c).
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